Question		on	Expected response		Max mark	Additional guidance
8.	(a)	(i)	$(A = \pi r^2)$ $A = \pi \times (15 \times 10^{-3})^2$	(1)	4	Accept: 0.01, 0.0120, 0.01202
			$A = h \times (13 \times 10^{-1})$	(1)		The use of 3.14 is acceptable for π . For use of 3.14, accept: $P = 0.01201$
			A	(1)		$I = \frac{P}{A}$ anywhere (1)
			$17 = \frac{P}{\pi \times (15 \times 10^{-3})^2}$	(1)		If no attempt to calculate area,
			P = 0.012 W	(1)		maximum (1) mark for irradiance relationship.
		(ii)	(Experimental setup is) not a point source	t	1	Accept: The beam of light does not diverge
			OR			Sodium lamp is not a point source,
			Parallel beam so the irradiance do not change with distance.	es		on its own - award (0) marks.
	(b)	(i)	Lower (energy level)		1	
		(ii)		(1)	5	Accept: 3.4, 3.377, 3.3769
			$3.00 \times 10^8 = f \times 589.0 \times 10^{-9}$	(1)		Accepts
						Accept: $\Delta E = hf$
				(1)		OR
			$E = 6.63 \times 10^{-34} \times \left(\frac{3.00 \times 10^8}{589.0 \times 10^{-9}} \right) $ (1)	(1)		$E_2 - E_1 = hf$
			$E = 3.38 \times 10^{-19} \text{ J}$	(1)		$v = f\lambda$ anywhere (1)
						E = hf anywhere (1)
						Alternative method:
						$(\Delta)E = \frac{hc}{\lambda}$
						OR hc
						$E_2 - E_1 = \frac{hc}{\lambda}$
						Combined relationship (2) Substitution for c and λ (1) Substitution for h (1) Final answer (1)

Question			Expected response	Max mark	Additional guidance
8.	(b)	(iii)	There are more electrons (per second) making the transition for the 589.0 nm line. (1) Meaning more photons (per second) are emitted. (1) OR There are fewer electrons (per second) making the transition for the 589.6 nm line. (1) Meaning fewer photons (per second) are emitted. (1)	2	Do not accept greater brightness due to greater frequency/energy of the photons.