Question			Expected response		Max mark	Additional guidance
13.	(a)	(i)	$C = \frac{Q}{V}$	(1)	3	Accept: 20, 24.0, 24.00
			$C = \frac{Q}{V}$ $C = \frac{136.8 \times 10^{-3}}{5.7}$	(1)		
			$C = 24 \times 10^{-3} \text{ F}$	(1)		
		(ii)			3	Or consistent with (a)(i)
						Suspend significant figures rule in this question.
			$\% \Delta V = \left(\frac{0.1}{5.7} \times 100\right) = 1.8(\%)$	(1)		Anywhere
			$\Delta C = \frac{1.8}{100} \times 24 \times 10^{-3}$	(1)		Accept rounding at an intermediate stage in this question.
			$\Delta C = 4 \times 10^{-4} \text{ F}$	(1)		stage in this question.
						Alternative method:
						$\Delta V = \left(\frac{0.1}{5.7}\right) = 0.018$ anywhere (1)
						$\Delta C = \frac{0.1}{5.7} \times 24 \times 10^{-3} $ (1)
						$\Delta C = 4 \times 10^{-4} \text{ F} \tag{1}$
	(b)		(t = 5RC)		2	Or consistent with (a)(i) Accept: 2000
			$t = 5 \times 15 \times 10^3 \times 24 \times 10^{-3}$	(1)		
			t = 1800 s	(1)		