(13) (a) (b)
$$AC^2 = (\sqrt{5})^2 - 1^2$$
 $AD^2 = (\sqrt{10})^2 - 1^2$
= 5-1 = 10-1

$$AC = 2$$
 $AD = 3$

$$\cos p = \frac{2}{\sqrt{5}} \qquad \cos q = \frac{3}{\sqrt{10}}$$

(b)
$$Sin(p+q) = Sinpcusq + cuspsinq$$

= $\left(\frac{1}{15} \times \frac{3}{110}\right) + \left(\frac{2}{15} \times \frac{1}{110}\right)$

$$= \frac{3}{\sqrt{50}} + \frac{2}{\sqrt{50}}$$

$$= \frac{5}{\sqrt{50}}$$

$$= \frac{5}{\sqrt{25}\sqrt{3}}$$

$$= \frac{5}{5\sqrt{3}} = \frac{1}{\sqrt{3}}$$

T2019 H Q13

$$AC = \sqrt{5} - 1 = 2 \qquad COSP = \sqrt{5}$$

$$AD = 2 + 1 = 3 \qquad COSP = \sqrt{10}$$

$$Sinq = \sqrt{10}$$

$$\frac{1}{2}$$
 $\frac{3}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$

Question			Generic scheme	Illustrative scheme	Max mark
13.	(a)	(i)	•¹ determine $\cos p$	$\bullet^1 \frac{2}{\sqrt{5}}$	1
		(ii)	•² determine $\cos q$	$\bullet^2 \frac{3}{\sqrt{10}}$	1

Notes:

1. Where candidates do not simplify the perfect squares see Candidates A and B.

Commonly Observed Responses:

Candidate A - no evidence of simplification

Candidate A - no evidence of simplification
$$\cos p = \frac{\sqrt{4}}{\sqrt{5}}$$

$$\cos q = \frac{\sqrt{9}}{\sqrt{10}}$$
Repeated error not penalised twice

Candidate B - simplification in part (b)

(a)
$$\cos p = \frac{\sqrt{4}}{\sqrt{5}} \cos q = \frac{\sqrt{9}}{\sqrt{10}}$$

 \vdots
(b) $\sin(p+q) = \frac{5}{\sqrt{9}}$
Roots have been simplified in (b)

Question		Generic scheme	Illustrative scheme	Max mark
(b)		$ullet^3$ select appropriate formula and express in terms of p and q	• $\sin p \cos q + \cos p \sin q$	3
		•4 substitute into addition formula	$\bullet^4 \frac{1}{\sqrt{5}} \times \frac{3}{\sqrt{10}} + \frac{2}{\sqrt{5}} \times \frac{1}{\sqrt{10}}$	
		•5 evaluate $\sin(p+q)$	\bullet ⁵ $\frac{1}{\sqrt{2}}$	

Notes:

- 2. Award •³ for candidates who write $\sin\left(\frac{1}{\sqrt{5}}\right) \times \cos\left(\frac{3}{\sqrt{10}}\right) + \cos\left(\frac{2}{\sqrt{5}}\right) \times \sin\left(\frac{1}{\sqrt{10}}\right)$. •⁴ and •⁵ are unavailable.
- 3. For any attempt to use $\sin(p+q) = \sin p + \sin q$, \bullet^4 and \bullet^5 are unavailable.
- 4. At \bullet^5 , accept answers such as $\frac{5}{\sqrt{50}}$ or $\frac{5}{5\sqrt{2}}$ but not $\frac{5}{\sqrt{5}\times\sqrt{10}}$.
- 5. At \bullet ⁵, the answer must be given as a single fraction.
- 6. Do not penalise trigonometric ratios which are less than -1 or greater than 1.

Commonly Observed Responses: