| Q  | uestion | Expected response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Max<br>mark | Additional guidance                                                                                                                                                                                                                                                                                                                                                                    |
|----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. | (a)     | $m_x u_x + m_y u_y = m_x v_x + m_y v_y$ (1) $(760 \times 12.0) + (840 \times 4.0)$ $= (760 \times v_x) + (840 \times 8.5)$ $v_x = 7.0 \text{ m s}^{-1}$ (1)                                                                                                                                                                                                                                                                                                                                                           | 3           | Accept: 7, 7.03, 7.026  Equating the total momenta before and after (1) All substitutions (1) Final answer (1)  If a direction is stated it must be to the right otherwise MAX 2 marks.                                                                                                                                                                                                |
|    | (b)     | $E_{k} = \frac{1}{2}mv^{2}$ Before $E_{k} = \frac{1}{2}m_{x}u_{x}^{2} + \frac{1}{2}m_{y}u_{y}^{2}$ $E_{k} = (\frac{1}{2} \times 760 \times 12.0^{2}) + (\frac{1}{2} \times 840 \times 4.0^{2})$ $E_{k} = 61440 \text{ (J)}$ After $E_{k} = \frac{1}{2}m_{x}v_{x}^{2} + \frac{1}{2}m_{y}v_{y}^{2}$ $E_{k} = (\frac{1}{2} \times 760 \times 7.0^{2}) + (\frac{1}{2} \times 840 \times 8.5^{2})$ $E_{k} = 48965 \text{ (J)}$ (Total) $E_{k}$ before is greater than (total) $E_{k}$ after, (the collision is inelastic). | 4           | Or consistent with (a)  1 mark for relationship 1 mark for <u>all</u> substitutions 1 mark for <u>both</u> total kinetic energies 1 mark for correct final statement  Suspend significant figure rule for calculated values of total kinetic energies in this question.  Kinetic energy is lost. (Therefore inelastic.)  E <sub>k</sub> before ≠ E <sub>k</sub> after is insufficient. |
|    | (c)     | $Ft = mv - mu$ $F \times 0.82 = (840 \times 8.5) - (840 \times 4.0)$ (1) $F = 4.6 \times 10^{3} \text{ N}$ (1)                                                                                                                                                                                                                                                                                                                                                                                                        | 3           | Accept: 5, 4.61, 4.610  Accept: Impulse = $mv - mu$ $u$ and $v$ must be substituted correctly  If the force that car Y exerts on car X is calculated, then there must be a statement that the forces have equal magnitude for final mark, otherwise MAX 2 marks.  For this method - Accept: 5, 4.63, 4.634 (when $v = 7.0$ ) Or consistent with (a)                                    |
|    | (d)     | (During a collision the tyre wall will) increase the time of contact (between the car and the wall). (1) (this will) reduce the (magnitude of the) force (experienced by the driver). (1)                                                                                                                                                                                                                                                                                                                             | 2           | INDEPENDENT MARKS  Accept: time/duration of collision  Accept: 'rate of change in momentum' for force.                                                                                                                                                                                                                                                                                 |