Question		Expected response	Max mark	Additional guidance
4.	(a)	(distance= $6 \cdot 4 \times 10^6 + 36 \cdot 0 \times 10^6$) = $42 \cdot 4 \times 10^6$ m	1	
	(b)	$F = G \frac{m_1 m_2}{r^2} $ $57 = 6.67 \times 10^{-11} \times \frac{6.0 \times 10^{24} \times m_2}{\left(42.4 \times 10^6\right)^2} $ $m_2 = 260 \text{ kg} $ (1)		Or consistent with (a) Accept: 300, 256, 256·1
	(c)	W = mg (1 $57 = 260 \times g$ (1 $g = 0.22 \text{ Nkg}^{-1}$ (1		Or consistent with (b) Accept: 0.2 , 0.219 , 0.2192 Accept: $F=mg$ Do not accept: $F=ma - (0 \text{ marks})$ Alternative method: $g = G\frac{M}{r^2} \qquad \qquad (1)$ $g = 6.67 \times 10^{-11} \times \frac{6.0 \times 10^{24}}{\left(42.4 \times 10^6\right)^2} \qquad \qquad (1)$ $g = 0.22 \text{ N kg}^{-1} \qquad \qquad (1)$
	(d)	Force is the same (1 1/4 the mass has an effect of quartering the force (1 1/2 the orbital height has an effect of quadrupling the force (1)		Look for this statement first - if incorrect or missing then 0 marks. Can justify by calculation Correct substitution of $\frac{1}{2}r$ and $\frac{1}{4}m$ or consistent with (a) and (b) (1) Correct final answer (1)