Question			Expected response		Max mark	Additional guidance	
12.	(a)	(i)	1·5 V		1		
		(ii)	E=V+Ir	(1)	3	Accept: 0·2, 0·227, 0·2273	
			$1.5 = 1.3 + 0.88r$ $r = 0.23 \Omega$	(1) (1)		Alternative methods: V = IR $0.2 = 0.88 \times R$	(1) (1)
						$R=0.23\Omega$	(1)
						$ lost volts = Ir 0 \cdot 2 = 0 \cdot 88 \times R R = 0 \cdot 23 \Omega $	(1) (1) (1)
		(iii)	(When the switch is closed) there a current (in the circuit). Voltage (is dropped) across the internal resistance.	e is (1)	2	Independent marks Do not accept 'current increatits own. 'Lost volts' is not sufficient of own	
	(b)	(i)	E = V + Ir and $V = IR$	(1)	3	Accept: 3,2·50,2·500	
			CR			Both relationships	(1)
			$E = I(R+r)$ $9 \cdot 0 = I(2 \cdot 4 + 1 \cdot 2)$ $I = 2 \cdot 5 A$	(1) (1)		Both substitutions Alternative method: $V = IR$ (1 $9 \cdot 0 = I \times 3 \cdot 6$	(1)) (1)
						I=2.5 A For other alternative method All relationships All substitutions Correct final answer	(1)
		(ii)	$P=I^2R$	(1)	3	Or consistent with (b)(i) Accept 20,15·0,15·00	
			$P = 2.5^{2} \times 2.4$ P = 15 W	(1)		For alternative methods: All relationships All substitutions Correct final answer	(1) (1) (1)