For SiPis
$$\frac{dy}{dx} = 0$$
,
 $2x^3 - 6x^2 = 0$

$$2x^{2}(x-3)=0$$

$$2x^{2}=0 \qquad x-3=0$$

$$x=0 \qquad x=3$$

Marking instructions for each question

Question			Generic scheme	Illustrative scheme	Max mark
1.			•¹ start to differentiate	• 1 $2x^3$ or $-6x^2$	4
			•² complete derivative and equate to 0	$\bullet^2 2x^3 - 6x^2 = 0$	
			•³ factorise derivative	• 3 $2x^{2}(x-3)$	
			•4 process cubic for <i>x</i>	•4 0 and 3	

Notes:

- 1. 2 is only available if = 0 appears at either 2 or 3 stage, however see Candidate A.
- 2. Accept $2x^3 = 6x^2$ for •2.
- 3. Accept $x^2(2x-6)$ for \bullet^3 .
- 4. For candidates who divide by x or x^2 throughout see Candidate B.
- 5. •³ is available to candidates who factorise **their** derivative from •² as long as it is of equivalent difficulty.
- 6. x = 0 and x = 3 must be supported by valid working for \bullet^4 to be awarded.

Commonly Observed Responses:

Candidate A		Candidate B	
Stationary points when	$\frac{dy}{dx} = 0$	$2x^{3} - 6x^{2} = 0$ $2x^{3} = 6x^{2}$ $\bullet^{1} \checkmark \bullet^{2} \checkmark$	
$\frac{dy}{dx} = 2x^3 - 6x^2$	•1 ✓ •2 ✓	$x = 3$ • 4 x Dividing by x^2 is not valid as $x = 0$ is a solution.	
$\frac{dy}{dx} = 2x^2(x-3)$	•³ ✓		
x = 0 and $x = 3$	•⁴ ✓		