Question			Expected response	Max mark	Additional guidance
10.	(a)	(i)	Blue (light) (1) Shortest wavelength of light (1) Path difference is smaller/equals the wavelength so the spots are closer together OR $\sin \theta$ is proportional to λ (1) $m\lambda = d \sin \theta$ (1) $(1\times)\lambda = 3\cdot 3\times 10^{-6}\times \sin 8\cdot 9$ (1) $\lambda = 5\cdot 1\times 10^{-7}$ m (510 nm) (1)		Look for this statement first - if incorrect or missing then (0 marks). Accept: $d \sin \theta = m\lambda$ and shortest λ gives smallest $\sin \theta$ (which gives smallest θ) Alternative methods: Can be shown by calculation but it must be clear the candidate has used appropriate wavelengths. Accept: $5,5\cdot11,5\cdot105$ Accept: $\lambda = d \sin \theta$ in this case
		(ii)	Green	1	Or consistent with (b)(i) but must be red, green or blue. If λ in (b)(i) lies outside of range of red, green or blue this mark is not accessible.

Question			Expected response		Max mark	Additional guidance
10.	(b)	(iii)	$(\sin \theta = \frac{m\lambda}{d} \text{ so if } d \text{ is greater then})$ angle θ will be smaller Smaller angle more difficult to measure accurately/greater percentage uncertainty.	(1)	2	Accept: maxima are closer together (1) Smaller distance between maxima more difficult to measure accurately/greater percentage uncertainty.(1)
11.	(a)		$n = \frac{\sin \theta_1}{\sin \theta_2}$ $2 \cdot 42 = \frac{\sin 49 \cdot 0}{\sin \theta_2}$ $\theta_2 = 18 \cdot 2^\circ$	(1) (1) (1)	3	Accept: 18, 18·17, 18·172 Accept: $ \frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2} \tag{1} $ $ \frac{2 \cdot 42}{1} = \frac{\sin 49 \cdot 0}{\sin \theta_2} \tag{1} $ $ \theta_2 = 18 \cdot 2^{\circ} \tag{1} $
	(b)		$\sin \theta_c = \frac{1}{n}$ $\sin \theta_c = \frac{1}{2 \cdot 42}$ $\theta_c = 24 \cdot 4^\circ$	(1) (1) (1)	3	Accept: 24, 24·41, 24·407
	(c)		more (sparkle) Critical angle for moissanite is smaller than for diamond (Total internal) reflection more likely (with moissanite).	(1) (1) (1)	3	Look for this statement first - if incorrect or missing then (0 marks). Critical angle for moissanite is smaller than for diamond can be shown by calculation.