

S857/76/12

Physics Paper 1 — Multiple choice

Date — Not applicable

Duration — 45 minutes

Total marks — 25

Attempt ALL questions.

You may use a calculator.

Instructions for the completion of Paper 1 are given on page 02 of your answer booklet S857/76/02.

Record your answers on the answer grid on page 03 of your answer booklet.

Reference may be made to the data sheet on *page 02* of this question paper and to the relationships sheet S857/76/22.

Space for rough work is provided at the end of this booklet.

Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	C	$3.00 \times 10^8 \mathrm{ms^{-1}}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{Js}$
Magnitude of the charge on an electron	e	1.60 × 10 ^{−19} C	Mass of electron	m_{e}	9·11 × 10 ^{−31} kg
Universal Constant of Gravitation	G	$6.67 \times 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$	Mass of neutron	$m_{ m n}$	$1.675 \times 10^{-27} \mathrm{kg}$
Gravitational acceleration on Earth	g	9·8 m s ⁻²	Mass of proton	$m_{ m p}$	$1.673 \times 10^{-27} \mathrm{kg}$
Hubble's constant	H_0	$2.3 \times 10^{-18} \mathrm{s}^{-1}$			

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index	
Diamond	2.42	Water	1.33	
Crown glass	1.50	Air	1.00	

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	656 486 434	Red Blue-green Blue-violet	Cadmium	644 509 480	Red Green Blue
	410 397	Violet Ultraviolet		Lasers	
	389 Ultraviolet		Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide	9550 } 10 590 }	Infrared
			Helium-neon	633	Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density/kg m ⁻³	Melting point/K	Boiling point/K
Aluminium	2.70×10^3	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	• • • •	
Hydrogen	9·0 × 10 ⁻²	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1\cdot01\times10^5\,Pa$.

Marking instructions for each question

Question	Answer	Max mark
1.	С	1
2.	Α	1
3.	В	1
4.	С	1
5.	С	1
6.	С	1
7.	В	1
8.	В	1
9.	С	1
10.	В	1
11.	D	1
12.	D	1
13.	В	1
14.	E	1
15.	D	1
16.	Α	1
17.	E	1
18.	С	1
19.	D	1
20.	С	1
21.	E	1
22.	Α	1
23.	A	1
24.	E	1
25.	D	1

[END OF SPECIMEN MARKING INSTRUCTIONS]

S857/76/01

Physics Paper 2

Marking Instructions

These marking instructions have been provided to show how SQA would mark this specimen question paper.

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

General marking principles for Physics Higher

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If a candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your team leader.
- (c) Do not award half marks.
- (d) Where a candidate incorrectly answers part of a question and carries the incorrect answer forward in the following part, award marks if the incorrect answer has then been used correctly.
- (e) Unless a numerical question specifically requires evidence of working to be shown, award full marks for a correct final answer (including units if required) on its own.
- (f) Award marks for a diagram or sketch that correctly conveys the response required by the question. Clear and correct labels (or the use of standard symbols) are usually required for marks to be awarded.
- (g) Award marks for knowledge of relevant relationships alone. When a candidate writes down several relationships and does not select the correct one to continue with, for example by substituting values, do not award a mark.
- (h) Award marks for non-standard symbols where the symbols are defined and the relationship is correct, or where the substitution shows that the relationship used is correct. This must be clear and unambiguous.
- (i) Do not award marks if a 'magic triangle' (eg) I is the only statement in a candidate's response. To gain the mark, the correct relationship must be stated, for example V = IR or $R = \frac{V}{I}$.
- (j) In rounding to an expected number of significant figures, award the mark for responses that have up to two figures more or one figure less than the number in the data with the fewest significant figures.
- (k) Award marks where candidates have incorrectly spelled technical terms, provided that responses can be interpreted and understood without any doubt as to the meaning. Where there is ambiguity, do not award the mark. Two specific examples of this would be when the candidate uses a term that might be interpreted as 'reflection', 'refraction' or 'diffraction' (for example 'defraction'), or one that might be interpreted as either 'fission' or 'fusion' (for example 'fussion').

- (I) Only award marks for a valid response to the question asked. Where candidates are asked to:
 - identify, name, give, or state, they must only name or present in brief form.
 - **describe**, they must provide a statement or structure of characteristics and/or features.
 - **explain**, they must relate cause and effect and/or make relationships between things clear.
 - **determine** or **calculate**, they must determine a number from given facts, figures or information.
 - **estimate**, they must determine an approximate value for something.
 - **justify**, they must give reasons to support their suggestions or conclusions. For example this might be by identifying an appropriate relationship and the effect of changing variables.
 - **show that**, they must use physics [and mathematics] to prove something, for example a given value *all steps*, *including the stated answer*, *must be shown*.
 - **predict**, they must suggest what may happen based on available information.
 - **suggest**, they must apply their knowledge and understanding of physics to a new situation. A number of responses are acceptable: award marks for any suggestions that are supported by knowledge and understanding of physics.
 - use their knowledge of physics or aspect of physics to comment on, they must apply their skills, knowledge and understanding to respond appropriately to the problem/situation presented (for example by making a statement of principle(s) involved and/or a relationship or equation, and applying these to respond to the problem/situation). Candidates gain marks for the breadth and/or depth of their conceptual understanding.

(m) Marking in calculations

Example question

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor. (3 marks)

	Example response	Mark + Co	omment
1.	V = IR	1 mark:	formula
	7.5 = 1.5R	1 mark:	substitution
	$R = 5.0 \Omega$	1 mark:	correct answer
2.	5·0 Ω	3 marks:	correct answer
3.	5.0	2 marks:	unit missing
4.	4·0 Ω	0 marks:	no evidence, wrong answer
5.	_Ω	0 marks:	no working or final answer
6.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0 \Omega$	2 marks:	arithmetic error
7.	$R = \frac{V}{I} = 4.0 \ \Omega$	1 mark:	formula only
8.	$R = \frac{V}{I} = \underline{\hspace{1cm}} \Omega$	1 mark:	formula only
9.	$R = \frac{V}{I} = \frac{7.5}{1.5} = \underline{\qquad} \Omega$	2 marks:	formula & substitution, no final answer
10.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0$	2 marks:	formula & substitution, wrong answer
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0 \Omega$	1 mark:	formula but wrong substitution
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0 \Omega$	1 mark:	formula but wrong substitution
13.	$R = \frac{I}{V} = \frac{1.5}{7.5} = 5.0 \Omega$	0 marks:	wrong formula
14.	V = IR		
	$7.5 = 1.5 \times R$	2 marks:	formula & substitution, arithmetic error
	$R = 0.2 \Omega$		
15.	$V = IR$ $R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2 \Omega$	1 mark:	formula correct but wrong rearrangement of symbols

Marking instructions for each question

Q	uestic	on	Expected response		Max mark	Additional guidance
1.	(a)		v = u + at	(1)	3	Accept 5, 5.00, 5.000
			$20 \cdot 0 = 0 + a \times 4 \cdot 0$	(1)		• • •
			$a = 5.0 \text{ m s}^{-2}$	(1)		
	(b)		motorcycle		4	Accept 20·0, 20·00
			$s = area \ under \ graph$	(1)		Alternative method
			$s = \frac{1}{2} \times 4.0 \times 20.0$	(1)		motorcycle
			car			$S = ut + \frac{1}{2}at^2$
			$s = area \ under \ graph$			$s = ut + \frac{1}{2}at^{2}$ $s = \frac{1}{2} \times 5 \cdot 0 \times 4 \cdot 0^{2}$
			$\begin{vmatrix} s = 4 \cdot 0 \times 15 \cdot 0 \\ s_{between} = (4 \cdot 0 \times 15 \cdot 0) - (\frac{1}{2} \times 4 \cdot 0 \times 20) \end{vmatrix}$	(1) ·0)		car
			$s_{between} = (1 \text{ ox 13 o}) (2 \text{ x 1 ox 20})$ $s_{between} = 20 \text{ m}$	(1)		$d = \overline{v}t$
						$d = 15 \times 4 \cdot 0$
						1 mark for both relationships
						1 mark for each substitution
						1 mark for final answer
	(c)	(i)	F = ma	(1)	4	Or consistent with (a)
			$F = 290 \times 5.0$	(1)		Accept 400, 350·0, 350·00
			$F = F_{Driving} - F_{Friction}$			
			$(290\times5\cdot0)=1800-F_{Friction}$	(1)		
			$F_{Friction} = 350 \text{ N}$	(1)		
		(ii)	Frictional force /friction/drag/air resistance increases with speed	(1)	2	
			Driving force must be increased to ensure a constant unbalanced force			
	(d)		velocity (m s ⁻¹)	· /	1	Line can level out, but not curve downwards.
			graph curves (gradually, away from velocity axis) after 5 s	m		

Q	uestion	Expected response		Max mark	Additional guidance
2.		Estimate of car mass (500 kg < mass < 3000 kg)	(1)	4	Both estimates must be within the given tolerances in order to access the final 1 mark.
		Estimate of car speed (20 m s ⁻¹ < speed < 70 m s^{-1})	(1)		
		$E_k = \frac{1}{2}mv^2$	(1)		
		Final answer	(1)		

Q	Question		Expected response		Max mark	Additional guidance
3.	(a)	(i)	$v^2 = u^2 + 2as$	(1)	2	SHOW question.
			$v^2 = 0 + 2 \times 9 \cdot 8 \times 2 \cdot 0$	(1)		A maximum of 1 mark is
			$v = 6.3 \text{ m s}^{-1}$			available if the final line is not
			OR			shown.
			$(m)gh = \frac{1}{2}(m)v^2$	(1)		
			$(42) \times 9 \cdot 8 \times 2 \cdot 0 = \frac{1}{2} (42) v^2$	(1)		
			$v = 6.3 \text{ m s}^{-1}$			
		(ii)	$\Delta p = mv - mu$	(1)	3	Accept 500, 487, 487.2
			$\Delta p = (42 \times (5 \cdot 3)) - (42 \times (-6 \cdot 3))$	(1)		Accept alternative direction
			$\Delta p = 490 \text{ kg m s}^{-1}$	(1)		convention.
		(iii)	Ft = mv - mu	(1)	3	Or consistent with (a)(ii)
			$F \times 0.50 = 490$	(1)		Accept 1000, 980⋅0
			F = 980 N	(1)		
	(b)		Tension (in rope) now has a	(4)	2	Independent marks
			horizontal component	(1)		Statements must refer to forces
			Vertical component of tension (in rope) is unchanged	(1)		on rope.

Q	Question		Expected response	Max mark	Additional guidance
4.	(a)		$d = \overline{v}t \tag{1}$	2	SHOW question.
			$d = (3.00 \times 10^8 \times 0.995) \times 2.2 \times 10^{-6} $ (1) $d = 660 $ m		A maximum of 1 mark is available if the final line is not shown.
	(b)		$t' = \frac{t}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \tag{1}$	3	Accept 2, 2·20, 2·203
			$t' = \frac{2 \cdot 2 \times 10^{-6}}{\sqrt{1 - \left(\frac{0.995}{1}\right)^2}} $ (1)		
			$t' = 2 \cdot 2 \times 10^{-5} \text{ s}$ (1)		
	(c)		The mean lifetime of the muon is greater for an observer in Earth's frame of reference OR The mean distance travelled by a muon is shorter in the muon's frame of reference	1	

Q	uesti	on	Expected response	Max mark	Additional guidance
5.	(a)	(i)	The galaxy is moving away from Earth (1)	2	
			The apparent wavelengths of the lines of the hydrogen spectrum from the galaxy have increased (1) OR The apparent frequencies of the lines of the hydrogen spectrum from the galaxy are less than the corresponding frequencies from the laboratory source OR The frequency of the light from the galaxy has shifted towards the red end of the spectrum OR		
			Observed light from the galaxy shows redshift		
		(ii)	$z = \frac{(\lambda_{obs} - \lambda_{rest})}{\lambda_{rest}} \tag{1}$	5	Accept 9·1,9·146,9·1463
			$z = \frac{(676 \times 10^{-9} - 656 \times 10^{-9})}{656 \times 10^{-9}} $ (1)		
			$z = \frac{v}{c} \tag{1}$		
			$\frac{(676\times10^{-9}-656\times10^{-9})}{656\times10^{-9}} = \frac{v}{3\cdot00\times10^{8}}$		
			(1)		
			$v = 9.15 \times 10^6 \text{ m s}^{-1}$ (1)		
	(b)		$v = H_0 d \tag{1}$	3	Accept 5, 5·22, 5·217
			$1.2 \times 10^7 = 2.3 \times 10^{-18} \times d \tag{1}$		
			$d = 5.2 \times 10^{24} \text{ m} $ (1)		

Question	Expected response	Max mark	Additional guidance
5. (c)	Award 1 mark where the candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem. Award 2 marks where the candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem. Award 3 marks where the candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks. Award 0 marks where the candidate has not demonstrated an understanding of the physics involved. There is no evidence that they have recognised the area of physics involved, or they have not given any statement of a relevant physics principle. Award this mark also if the candidate merely restates the physics given in the question.	3	Candidates may use a variety of physics arguments to answer this question. Award marks based on candidates demonstrating, overall, good, reasonable, limited or no understanding.

Q	uesti	on	Expected response	Max mark	Additional guidance
6.	(a)	(i)	$W = QV \tag{1}$	2	SHOW question.
			$W = 1.60 \times 10^{-19} \times 3.5 \times 10^{4} $ (1)		A maximum of 1 mark is
			$W = 5.6 \times 10^{-15} \text{ J}$		available if the final line is not shown.
		(ii)	$E_{\scriptscriptstyle k}$ at R	5	Accept 3,2·85,2·852
			$E_k = \frac{1}{2}mv^2 \tag{1}$		
			$E_k = 0.5 \times 1.673 \times 10^{-27} \times (1.2 \times 10^6)^2$		
			(1)		
			E_k at S		
			$E_k = \frac{1}{2}mv^2$		
			$\left[0.5\times1.673\times10^{-27}\times(1.2\times10^6)^2\right]$		
			+5·6×10 ⁻¹⁵		
			$=0.5\times1.673\times10^{-27}\times v^2$		
			addition (1)		
			substitution (1)		
			$v = 2.9 \times 10^6 \text{ m s}^{-1}$ (1)		
	(b)	(i)	To ensure the (accelerating) force is in the same direction OR	1	
			To ensure the protons accelerate in		
			the same direction		
			OR To ensure that the direction of the		
			electric field is correct when the		
			proton passes through a tube		
	(b)	(ii)	Alternating voltage has a constant	1	
			frequency (rather than a frequency that changes)		
			OR		
			As speed of proton increases, they		
			travel further in the same time		
	(c)		Downwards	1	

Q	Question		Expected response	Max mark	Additional guidance
7.	(a)		Fundamental particles cannot be subdivided	1	
	(b)		$-\frac{1}{3}e$	1	
	(c)		The strong force (associated with the gluon) has a short range. (1) The gravitational force (requires a force mediating particle that) has infinite range. (1)	2	
	(d)		(The strong force is) 13 (orders of magnitude) greater (than the weak force)	1	
	(e)		beta decay	1	

Q	uestion	Expected response		Max mark	Additional guidance
8.	(a)	mass loss $m = (4 \times 1.673 \times 10^{-27}) - 6.646 \times 10^{-27}$ (1		4	Accept 4·1, 4·140, 4·1400
			1		
		$E = ((4 \times 1.673 \times 10^{-27}) -$			
		$(6.646 \times 10^{-27})) \times (3.00 \times 10^{8})^{2}$			
		(1)	,		
		$E = 4.14 \times 10^{-12} \text{ J} $ (1)	,		
	(b)	0·20 kg hydrogen has		3	Accept 1, 1·24,1·237
		$\frac{0.20}{1.673\times10^{-27}} \ (=1.195\times10^{26} atoms) $ (1 provides)		Multiplying the number of hydrogen nuclei by the energy for each reaction is wrong physics.
		$\frac{1.195 \times 10^{26}}{4} = 0.2989 \times 10^{26} \text{ reactions}$			
		(1)		
		releases			
		$0.2989 \times 10^{26} \times 4.14 \times 10^{-12}$			
		$=1.2\times10^{14} \text{ J}$ (1)		
	(c)	The particles involved in fusion reactions must be at a high temperature		1	

Q	Question		Expected response	Max mark	Additional guidance
9.	(a)		Irradiance is the power incident per unit area	1	
	(b)		Graphical method	3	ALTERNATIVE METHOD
			Correct quantities on axes $(I \text{ and } 1/d^2)$ (1)		d 0.200 0.300 0.400 0.500 I 672 302 170 110
			Accuracy of plotting and line of best fit (1)		$\begin{array}{ c c c c c c c c c }\hline Id^2 & 26.9 & 27.2 & 27.2 & 27.5 \\ \hline \\ & & & & & & & & & & & & & & & & &$
			Statement of relationship (1)		Within the limits of experimental
			Do not award statement mark if less than three points plotted accurately.		uncertainty, Id^2 is constant and so $I\alpha 1/d^2$.
			(Rlack cloth) provents reflections	1	Award 3 marks where all four calculated values in the table are correct and the final statement is correct. Award 2 marks where all four calculated values in the table are correct and the final statement is incorrect or omitted. Award 2 marks where three calculations in the table are correct and the final statement is correct. Award 1 mark where three calculations in the table are correct and the final statement is incorrect or omitted. Award 0 marks where fewer than three calculations are correct (a relationship cannot be stated from only two values or fewer).
	(c)		(Black cloth) prevents reflections	1 1	
	(d)		The laser is not a point source OR Light from the laser does not conform to the inverse square law OR Laser beam does not spread out	1	

Q	uestic	on	Expected response		Max mark	Additional guidance
10.	(a)	(i)	$v = f\lambda$	(1)	4	SHOW question.
			$3.00\times10^8 = f\times525\times10^{-9}$	(1)		A maximum of 3 marks is available if the final line is not
			E = hf	(1)		shown.
			$E = 6.63 \times 10^{-34} \times \left(\frac{3.00 \times 10^8}{525 \times 10^{-9}} \right)$	(1)		
			$E = 3.79 \times 10^{-19} \text{ J}$			
		(ii)	$(E_k = 3.79 \times 10^{-19} - 2.24 \times 10^{-19})$		1	
			$E_k = 1.55 \times 10^{-19} \text{ J}$			
	(b)	(i)	Photons with frequency below f_0 on not have enough energy to release electrons		1	
		(ii)	$E = hf_0$	(1)	3	Accept 3·4, 3·379, 3·3786
			$2 \cdot 24 \times 10^{-19} = (6 \cdot 63 \times 10^{-34}) \times f_0$	(1)		
			$f_0 = 3.38 \times 10^{14} \text{ Hz}$	(1)		

10. (c) Award 1 mark where the candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the physics within the problem. Award 2 marks where the candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem. Award 3 marks where the candidate has demonstrated a good understanding of the physics	10. (c) Award 1 mark where the candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem. Award 2 marks where the candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem. Award 3 marks where the candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved,	Question	Expected response	Max	Additional guidance	
comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks. Award 0 marks where the candidate has not demonstrated an understanding of the physics	application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks. Award 0 marks where the candidate has not demonstrated an understanding of the physics involved. There is no evidence that they have recognised the area of physics involved, or they have not given any statement of a relevant physics principle. Award this mark		Award 1 mark where the candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem. Award 2 marks where the candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem. Award 3 marks where the candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks. Award 0 marks where the candidate has not demonstrated an understanding of the physics involved. There is no evidence that they have recognised the area of physics involved, or they have not given any statement of a relevant	mark	Candidates may use a variety of physics arguments to answer this question. Award marks based on candidates demonstrating, overall, good, reasonable,	

Q	uestic	on	Expected response	Max mark	Additional guidance
11.	(a)		Bright fringes are produced by waves meeting in phase/crest to crest/trough to trough	1	
	(b)	(i)	$\Delta x = \frac{\lambda D}{d}$	3	Accept 2,2·00,1·999 The mark for dividing by 4 is independent
			$\frac{9.5 \times 10^{-3}}{4} = \frac{633 \times 10^{-9} \times 0.750}{d}$		
			division by 4 (1)		
			substitutions (1)		
			$d = 2 \cdot 0 \times 10^{-4} \text{ m}$ (1)		
		(ii)	$\%uncertainty\Delta x = \frac{0.2 \times 10^{-3} \times 100}{9.5 \times 10^{-3}} = 2.1\%$	3	
			(1)		
			$\%uncertaintyD = \frac{0.001 \times 100}{0.750} = 0.13\%$		
			(1)		
			Improve precision in measurement		
	(c)		of Δx (1) Green light has a shorter wavelength	2	
	(0)		(1) Fringes are closer together (1)	-	

Q	uestic	on	Expected response		Max mark	Additional guidance
12.	(a)		$n = \frac{\sin \theta_1}{\sin \theta_2} \tag{1}$)	2	SHOW question. A maximum of 1 mark is
			$n = \frac{\sin(51\cdot 4)}{\sin(36\cdot 0)} \tag{1}$)		available if the final line is not shown.
			$n=1\cdot33$			
	(b)	(i)	(Critical angle is) the angle of incidence that produces an angle of refraction of 90°		1	
		(ii)	$\sin \theta_c = \frac{1}{n} \tag{1}$)	3	Accept 49, 48·75, 48·753
			$\sin \theta_c = \frac{1}{1 \cdot 33} $ $\theta_c = 48 \cdot 8^{\circ} $ (1))		
			$\theta_c = 48 \cdot 8^{\circ} \tag{1}$)		

Q	uesti	on	Expected response		Max mark	Additional guidance
13.	(a)	(i)	2·5 Ω		1	
		(ii)	$E = \frac{y_2 - y_1}{x_2 - x_1}$		2	Or consistent with data points chosen
			$E = \frac{11 - 0}{0.80 - 0.15}$	445		
			substitution of two points on line $E = 17 \text{ V}$	(1)		
	(b)		V = IR	(1)	3	Or consistent with (a)(i) and (a)(ii)
			$17 = I \times 2.5$	(1)		
			I = 6.8 A	(1)		

Q	uestic	on	Expected response		Max mark	Additional guidance
14.	(a)		V = IR	(1)	3	Accept 4, 4·00, 4·000
			$12 = 3 \cdot 0 \times 10^{-5} \times R$	(1)		
			$R = 4 \cdot 0 \times 10^5 \Omega$	(1)		
	(b)	(i)	Q = It	(1)	3	Accept 8, 7·50, 7·500
			$Q = 3 \cdot 0 \times 10^{-5} \times 25$	(1)		
			$Q = 7.5 \times 10^{-4} \text{ C}$	(1)		
		(ii)	$C = \frac{Q}{V}$	(1)	4	Or consistent with (b)(i)
			V			Accept 9, 8·59, 8·591
			$220 \times 10^{-6} = \frac{7 \cdot 5 \times 10^{-4}}{V}$	(1)		
			$V = 3 \cdot 4 \text{ (V)}$	(1)		
			Therefore voltage across resistor	is		
			$12 - 3 \cdot 4 = 8 \cdot 6 \text{ V}$	(1)		

Q	uestic	n	Expected response		Max mark	Additional guidance
15.	(a)		Material 2		1	
15.	(b)		(Voltage applied causes) electrons to move towards conduction band of p-type Electrons move/drop from conduction band to valence band Photon emitted (when electron drops)	(1)	3	If candidate does not refer to either conduction band or valence band, award 0 marks. Bands must be named correctly in first two marking points ie not valency or conductive. Award 0 marks for any answer using recombination of holes and electrons on its own, with no reference to band theory.
						The final mark is dependent upon having at least one of the first two statements correct.

Q	uestion	Expected response	Max mark	Additional guidance
16.	(a)	Suitable scales with labels on axes (quantity and unit) (1)	3	
		Points plotted accurately (1)		
		Acceptable line(curve) of best fit (1)		
	(b)	7⋅5 mm ±1mm	1	Or consistent with graph drawn
	(c)	Repeat measurements (1)	2	
		Smaller steps/divisions/intervals in radius (around the 75% value or equivalent) (1)		

[END OF SPECIMEN MARKING INSTRUCTIONS]