Q	uestic	on	Expected response	Max mark	Additional guidance
9.	(a)	(i)	$E_{2}-E_{1}=hf$ $-2\cdot 976\times 10^{-18}-\left(-3\cdot 290\times 10^{-18}\right)$ $=6\cdot 63\times 10^{-34}\times f$ $\left(f=4\cdot 736048265\times 10^{14}\ Hz\right)$ $v=f\lambda \text{ (1)}$ (for both relationships anywhere) $3\cdot 00\times 10^{8}=4\cdot 736048265\times 10^{14}\times \lambda \text{ (1)}$ $\lambda=6\cdot 33\times 10^{-7}\text{ m} \text{ (1)}$		Accept: $6\cdot 3, 6\cdot 334, 6\cdot 3344$ Accept: $(\varDelta)E=hf$ with $v=f\lambda$ OR $E_5-E_3=hf$ with $v=f\lambda$ for relationship mark anywhere Note: $\varDelta E=3\cdot 14\times 10^{-19}$ (J) Accept: $3\cdot 290\times 10^{-18}-2\cdot 976\times 10^{-18}$ $=6\cdot 63\times 10^{-34}\times f$ for energy substitution mark If $2\cdot 976\times 10^{-18}-3\cdot 290\times 10^{-18}$ is shown for ΔE , maximum (1 mark) for both relationships. Alternative method: $E_2-E_1=\frac{hc}{\lambda}$ OR ($\varDelta)E=\frac{hc}{\lambda}$ Combined relationship (1) Substitution for h and h (1) Substitution for h and h (1) Final answer (1)
		(ii)	$9950 = \frac{P}{\pi \times (4.00 \times 10^{-4})^2}$	4	Accept a range of 1 to 5 significant figures for this question . The use of 3.14 for π is acceptable. $I = \frac{P}{A} \text{ anywhere -} \tag{1}$ If no attempt to calculate area, maximum (1 mark) for relationship.

Question			n	Expected response	Max mark	Additional guidance
9.		(b)		Obtain values of irradiance for different distances (1) Plot graph of I against $1/d^2$ (1) Graph of I against $1/d^2$ is a straight line through the origin (then this verifies the inverse square law of light) (1)	3	Look for this statement or equivalent first - if incorrect or missing then (0 marks). Alternative method: Obtain values of irradiance for different distances (1) Determine $I \times d^2$ (1) Values of Id^2 are a constant (then this verifies the inverse square law of light) (1)