Question	Answer	Max mark	Additional guidance
3. (a)	(Total momentum before = Total momentum after) $p = mv$ OR (1) $(m_x u_x + m_y u_y) = (m_x v_x + m_y v_y)$ $(0.75 \times 0.50) + (0.50 \times -0.30) = (0.75 \times 0.02) + (0.50 v_y)$ (1) $v_y = 0.42 \text{ m s}^{-1}$	2	"SHOW" question If sign convention is not applied then max 1 mark for formula.
(b)	$Ft = mv - mu$ $Ft = (0.50 \times 0.42) - (0.50 \times -0.30)$ $Ft = 0.36 \text{ N s}$ (1)	3	Accept: 0.4 Accept: Impulse = $mv - mu$ v and u must have opposite sign. Accept: kg m s ⁻¹
(c)	Calculate the <u>total</u> kinetic energy before and (<u>total</u> kinetic energy) after. (1) If E_k before is equal to E_k after the collision, is elastic. OR If E_k before is greater than E_k after, the collision is inelastic. (1)	2	Look for a statement relating to calculating/finding the total E_k before and after first, otherwise 0 marks. There must be an indication of total kinetic energy or equivalent term. Accept: If kinetic energy is not the same, collision is inelastic. Can show by calculation but would still require a statement for the second mark. Do not Accept: If kinetic energy is gained, collision is inelastic. If candidate says energy is lost then max 1 mark.

Q3(a) Maximum Mark: 2

RESPONSE 1

$$m_{1}u_{1} + m_{2}u_{2} = m_{1}u_{1} + m_{2}u_{2}$$

$$(0.75\times0.5) + (0.5\times-0.3) = (0.75\times0.02) + (0.5u_{2})$$

$$0.225 = 0.015 + 0.5v_{2}$$

$$0.21 = 0.5v_{2}$$

$$v_{2} = 0.42ms^{-1} \longrightarrow$$

RESPONSE 2

$$mu+mu=mv+mv$$

 $(0.75\times0.6)+(0.5\times-0.3)=(0.75\times0.02)$
 $+0.5v$
 $0.5v=0.225 \neq 0.015$
 $0.5v=0.21$
 $v=0.42m^{5-1}$

RESPONSE 3

$$m_{x}V_{x} + p_{y}V_{y} = m_{x}V_{x} + m_{y}V_{y}$$

$$(0.75 \times 0.5) + (0.5 \times -0.3) = (0.75 \times 0.02) + (0.5 \times v_{y})$$

$$0.225 = 0.015 + 0.5 \times v_{y}$$

$$0.5 \times v_{y} = 0.21$$

$$v_{y} = 0.42 \text{ ms}' \text{ to the right}$$

: 3

RESPONSE 1

Ft =
$$\Delta P$$

= $M_2 v_2 - M_2 u_2$
= $M_2 (v_2 - u_2)$
= $0.8 \times (0.42 - (-0.3))$
= $0.38 \, \text{Ns}$

RESPONSE 2

impulse Frameinu

impulse UBb= (0.5 × 6.42) - (0.5×03)

impulse = 0.06 N 60 6he right

RESPONSE 3

Ft=0.5×0.42-0.5×0.0.3 = 0.36 kgms-1

Q3(c) Maximum Mark: 2 RESPONSE 1

Calculate the kinetic energy (total) before the collision and after the collision. If the total kinetic energy before and after the collision is the same, the collision was elastic. If the total kinetic energy after the collision is less than the total kinetic energy before the collision, the collision was inclastic.

Q5(a)

RESPONSE 2	
Work out the kinetic energy	
of both cars before and after	
the collision and compare. If	
they have the same trinetic energy it is elastic, if they don't it was inelastic. RESPONSE 3	
Calculate the kinetic energy of Vehicle x and Uchide	
before g Sepretly then add the timetic energy of both	
together	
at.	
Then calculate the kinetic energy of the bus vehicles after the collision and add them together.	
If kinetic energy before = timelic energy after, the ble collision	
If the Einetic energy before \$\noting{\text{kinetic energy after,}} the Collision is inelastic	
Maximum Mark: 1 RESPONSE 1	
red shift	
RESPONSE 2	
(a) State one other piece of evidence that supports the Big Bang theory. (ormin microsom buchgrand radiution.	
redshipt of light from planety.	

RESPONSE 3	3
-------------------	---

(a) State one other piece of evidence that supports the Big Bang theory.	
(a) State one other piece of evidence that supports the Big Bang theory. If Something Isharing away frest Tothe Observe it Shifts to The red end of the Spectrum. (Keel Shift). This is what is	
Observed booking at distand flexamics.	

Q5(b)(i) Maximum Mark: 2 RESPONSE 1

age of universe =
$$\frac{1}{100}$$

$$= \frac{1}{2 \times 10^{17}}$$

$$= 5 \times 10^{16}$$

$$= 1.6 \times 10^{9}$$

$$= 1.6 \times 10^{9}$$

RESPONSE 2

Q5(b)(ii) A

Maximum Mark: 1

RESPONSE 1

As This is because the students constent is constant is not as accorde as the universally used version.

RESPONSE 2

More advanced telepopeas house been invented	
so the value for Ho is more accurate	
how than in terry.	

RESPONSE 2

Work out the Rinetic energy of both cars before and after the collision and compare. If they have the same kinetic energy it it is elastic, if they don't it was inelastic.

RESPONSE 3

before Glovake the kinetic energy of Vehicle x and Volnide the collision g Sepretly then add the the kinetic energy of both together.

Then calculate the kinetic energy of the bus vehicles after the collision and add them together.

If knetic energy before = truetic energy after, the ble collision

If the kinetic energy before \$\times kinetic energy after; the collision is inelastic

Q3(a)	2	
Response 1	2	The candidate has explicitly stated an appropriate relationship and substituted data correctly, stating the given final answer.
Response 2	2	The candidate has explicitly stated an appropriate relationship and substituted data correctly, stating the given final answer.
Response 3	2	The candidate has explicitly stated an appropriate relationship and substituted data correctly, stating the given final answer.
Q3(b)	3	
Response 1	2	The candidate has selected an appropriate relationship, substituted correctly but given an incorrect final answer due to an arithmetic slip.
Response 2	1	The candidate has selected an appropriate relationship, but has not substituted correctly (should be $u=-0.3$, using the candidate's sign convention). Even if the unit in the final answer had been correct, the mark for the final answer cannot be accessed.
Response 3	3	The selection of an appropriate relationship can be implied by the candidate's correct substitution of data. The candidate's final answer is correct.
Q3(c)	2	
Response 1	2	The candidate's explanation covers both the determination and correct comparison of the total kinetic energies before and after the interaction.

....a. a.......

Question /Response	Mark	Commentary
Response 2	0	The candidate neither states nor implies that the <i>total</i> kinetic energies of the system before and after the interaction should be determined and compared, and so the marks are not awarded.
Response 3	2	Through their description, the candidate implies the determination of the total kinetic energies of the system before and after the interaction. The comparison is also correct.