$$\overrightarrow{BC} = \begin{pmatrix} 8 \\ -9 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix}$$

$$\overrightarrow{AB} \text{ is parallel to BC since } \overrightarrow{AB} = \frac{3}{4} \overrightarrow{BC}$$

(a) $\overrightarrow{AB} = \begin{pmatrix} -1 \\ -0 \end{pmatrix} - \begin{pmatrix} 5 \\ -3 \end{pmatrix} = \begin{pmatrix} -6 \\ 3 \end{pmatrix}$

and since B is a common point, A, Band C are

collinear.

Question			Generic scheme	Illustrative scheme	Max mark
5.	(a)		•¹ find an appropriate vector eg \overrightarrow{AB}	$ \bullet^{1} \text{ eg } \overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix} $	3
			•² find a second vector eg \overrightarrow{BC} and compare	•² eg $\overrightarrow{BC} = \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix} \therefore \overrightarrow{AB} = \frac{3}{4}\overrightarrow{BC}$	
			•³ appropriate conclusion	•³ ⇒ AB is parallel to BC (common direction) and B is a common point ⇒ A,B and C are collinear.	

Notes:

- 1. Do not penalise inconsistent vector notation (eg lack of arrows or brackets).
- 2. Where \bullet^2 is not awarded, if a candidate states that $\overrightarrow{AB} = \overrightarrow{BC}$, only \bullet^1 is available.
- 3. 3 can only be awarded if a candidate has stated 'parallel', 'common point' and 'collinear'.
- 4. Candidates who state that 'points are parallel' or 'vectors are collinear' or 'parallel and share common point \Rightarrow collinear' do not gain \bullet ³. There must be reference to points A, B and C.
- 5. Do not accept 'a, b and c are collinear' at \bullet ³.

Commonly Observed Responses:

Candidate A - missing labels

$$\begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$$

 $\therefore \overrightarrow{AB} = \frac{3}{BC}$

●1 ∧

Missing labels at •2 is a repeated error

- ⇒ AB is parallel to BC and B is a common point
- \Rightarrow A, B and C are collinear

•³ **✓ 1**

Candidate B

$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$$

 $\overrightarrow{BC} = \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix}$

$$\begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \quad \bullet^2 \checkmark$$

 $\therefore \overrightarrow{AB} = \frac{4}{3}\overrightarrow{BC}$

Ignore working subsequent to correct statement made on previous line.

- ⇒ AB is parallel to BC and B is a common point
- \Rightarrow A, B and C are collinear

•³ **√**

Q	Question		Generic scheme	Illustrative scheme	Max mark
	(b)		• ⁴ state ratio	•4 3:4	1

Notes:

- 6. Answers in (b) must be consistent with the components of the vectors in (a) or the comparison of the vectors in (a). See Candidates C and D.
- 7. In this case, the answer for \bullet^4 must be stated explicitly in part (b).
- 8. The only acceptable variations for 4 must be related explicitly to AB and BC.

For $\frac{BC}{AB} = \frac{4}{3}$, $\frac{AB}{BC} = \frac{3}{4}$ or BC: AB = 4:3 stated in part (b) award •4. See Candidate E.

- 9. Accept unitary ratios for \bullet^4 , eg $\frac{3}{4}$:1 or 1: $\frac{4}{3}$.
- 10. Where a candidate states multiple ratios which are not equivalent, award 0/1.

Commonly Observed Responses:

Candidate C - using components of vectors

(a) $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$ (a) $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$ (a) $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$ (a) $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$ (b) 3:4

(a) $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$ (b) 4:3

(b) 4:3

(c) Candidate D - using comparison of vectors

(a) $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$ (b) 4:3

Candidate F - trivial ratio

Candidate E - acceptable variation

 $\frac{AB}{BC} = \frac{3}{4}$ Ratio = 4:3

Ignore working subsequent to correct statement made on previous line.