| Question |     |      | Answer                                                                                                                                                                        |                   | Max<br>mark | Additional dilidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|----------|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6.       | (a) | (i)  | W = QV<br>$W = 1.60 \times 10^{-19} \times 1600$<br>$W = 2.6 \times 10^{-16} \text{ J}$                                                                                       | (1)<br>(1)        | 2           | "SHOW" question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|          |     | (ii) | $E_K = \frac{1}{2}mv^2$ $2 \cdot 6 \times 10^{-16} = \frac{1}{2} \times 9 \cdot 11 \times 10^{-31} \times v^2$ $v = 2 \cdot 4 \times 10^7 \mathrm{m  s^{-1}}$                 | (1)<br>(1)<br>(1) | 3           | Accept: 2, 2·39, 2·389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|          | (b) |      | v=2·4×10 <sup>7</sup> m s <sup>-1</sup> Screen will be brighter/increase glow.  Electrons will gain more energy/move faster.  OR  Increase in number of electrons per second. |                   | 2           | Look for correct statement of effect first - if incorrect or missing then 0 marks.  Accept:  Circle of brightness on fluorescent screen is reduced. (1) Greater force of attraction on the electrons due to the cross. (1)  OR  Cross on screen is sharper. (1) Greater force of attraction on the electrons due to the cross. (1)  'increase in current' alone is insufficient for the justification.  Any correct statement followed by wrong physics, 0 marks.  Any correct statement followed by no justification, 0 marks. |  |

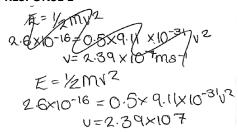
| Question |     | on | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max<br>mark | Additional guidance |
|----------|-----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|
| 6.       | (c) |    | Demonstrates no understanding 0 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3           |                     |
|          |     |    | Demonstrates limited understanding<br>1 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                     |
|          |     |    | Demonstrates reasonable understanding 2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                     |
|          |     |    | Demonstrates good understanding 3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                     |
|          |     |    | This is an open-ended question.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                     |
|          |     |    | 1 mark: The student has demonstrated a limited understanding of the physics involved. The student has made some statement(s) which is/are relevant to the situation, showing that at least a little of the physics within the problem is understood.                                                                                                                                                                                                                                                                                                      |             |                     |
|          |     |    | 2 marks: The student has demonstrated a reasonable understanding of the physics involved. The student makes some statement(s) which is/are relevant to the situation, showing that the problem is understood.                                                                                                                                                                                                                                                                                                                                             |             |                     |
|          |     |    | 3 marks: The maximum available mark would be awarded to a student who has demonstrated a good understanding of the physics involved. The student shows a good comprehension of the physics of the situation and has provided a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. This does not mean the answer has to be what might be termed an "excellent" answer or a "complete" one. |             |                     |

RESPONSE 1  $= 1660 \times 1.6 \times 10^{-19}$ 

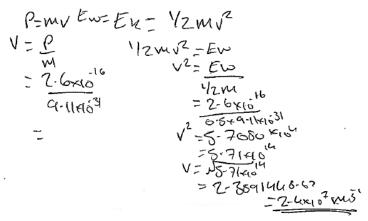
Q6(a)(i)

Maximum Mark: 2

= 2.6 × 10-16 J


= 
$$2.6 \times 10^{-16}$$
  
=  $2.6 \times 10^{-16}$   
RESPONSE 2  
 $W = QV$   
=  $1.6 \times 10^{-19} \times (1.6 \times 10^3)$ 

= 256×10-16


| Q6 | l۵۱ | /ii\         |
|----|-----|--------------|
| QO | aı  | (II <i>)</i> |

#### **Maximum Mark: 3**

#### **RESPONSE 1**



#### **RESPONSE 2**



# **RESPONSE 3**

$$Ew = Ex$$

2.6×10<sup>-16</sup> =  $\frac{1}{2}mv^2$ 
 $V = \int \frac{2.6 \times 10^{-16}}{\frac{1}{2} \times Cq.11 \times 10^{-31}}$ 

= 2.39 ×10<sup>7</sup> ms<sup>-1</sup>

# Q6(b)

#### Maximum Mark: 2

#### **RESPONSE 1**

The electrons will be less spread out
upon arrival at the screen because
they will be travelling faster and have
less time to spreadout.

# **RESPONSE 3**

The screen glass more brightly. As a higher number of elections hit the steven as the voltage is greater.

# **RESPONSE 4**

As the voltage has increased the amount of energy will increase making the screen brighter.

W = QV

=  $1.6 \times 10^{-19} \times 2.2 \times 10^{3}$ =  $3.52 \times 10^{-16}$ 

# Q 6(c) Maximum Mark: 3 RESPONSE 1

The model is good as it shows the circular motion taken by a particle in the LHC, but the plastic block doesn't show the same level of collision that happens between particles as in the LHC, particles are accelerated towards eachother but in this case the plastic block is stationary meaning that its not the same effect as intellice.

# **RESPONSE 2**

• The bold represents the particle. When

the bold hits the block, energy
is released. In the hadron addidor

the same process happens with

Reporticle hitting into an object.

The object causes the particle

to break down. Exergy is released

in this process also.

## **RESPONSE 3**

The noter speeding up the ball is realistic as in the large hadron collider the Rafficles are speed up by a charging electric field. The Second ball which is used to couble with the first ball is also realistic as faticles are to moved through tubes in the apposite direction towards a target where a magnetic field will influence their direction so they will collide with one another.

| _ whel "                                           | CERN                                                                |
|----------------------------------------------------|---------------------------------------------------------------------|
| soll turned mechanically die to contact with fract | profiles brond using                                                |
| oull accelerated at one point on loop at the motor | particles accelerated of one point when they want he electric Arell |
| wall accelarated by                                | prohiles accelerated                                                |
| Collisions caused by black being probled only      | Collision consed by probles sonly in apposite director-             |

# **RESPONSE 5**

In the model, the ball is only accelerated at one point in the circle. In the large kadron coll particles can be accelerated at more than one pla Cyclotrons Experior toms are used to accelerate the particle before they ender the LHC Synctotran. In the Model the plastic block is stationary when the by collides with it whereas in the large hadron colli the particles are accelerated inapposite director around the acalarator. This nakes the particles collide with nuch more energy than if they are was stationary before impact. In the model friction is used to keep the ball on the track. In the large hadron collider an alternating electri field is used to accelerate the particles through drift tubes. Electromagnets are used to focus the beam of particles that The Fidelike so that the wants can tern the dongthe circlar path.

In a large hadron collider such as the one at CERN, does not use motors to 8 ire a ball around a track. It uses magnetic sields to sire particles at \$1. great speads. In CERN, they also don't push a block onto the path of the particle, The particle is guided to an end point when a controlled collision can take place

# **RESPONSE 7**

The track in this model represents a magnetit field. This magnetit field this magnetit field the partitle vin circular motion moving at high speeds. The ball represents the partitle in the a real partitle acceleration. When the block is released and obstructs the ball, they will both addide.

In a partitle acceleration, this collision accesses incredible amounts releases of energy which can be collected and readtrys can be determined for justing scientifit analysis.

In some particle accelerators (circular accelerators), particles are accelerated in a large circle to build up speeds This is similar to what is shown in the model The particles are accelerated using magnets (for this reason, neutrons cannot be used) and electromagnets are used to peop the particles in a concentrated stream. The particles then hit a target and scientists study the data to see what has been reated. It was in this marker that many fundamental particles were discovered, such as the quarks that make up protons, and neutrons, though these cannot be used in a particle accelerator.

Although this model is similar to a real particle accelerator, it is not the same.

In a real particle accelerator the particle does not Sit on a track as the ball does, eletric sields are used so it does not touch anything. This makes the model less good as the ball can be slowed down by friction.

Also in a real particle accelerator the particle is constantly being purhed around by electric sields honever this model is only being purhed around

at a certain point of the track making it less like a real particle accelerator. Also in a real particle accelerator 2 particles collide with each other therefore 2 of the same thing collide however in this model it is not 2 of the same thing as it is a ball and a block. This model would be more like a real particle

accelerator if 2 balls were are used the

Collide with each other.

ball acts  $\sigma s$ a pantala regatively chared Particle. The plastic block acts Siell, Both Of these regarrely repell). Therefore, when for (houses Cuts the plastic block, this Charges Collisians between family result, thus generates MORE americ energy.

# Response 11

this is a good model, because it has all the basics, it has a circular the trank so that it can be accelerated by as much as you want, unlike a linear accelerator where it can only accelerate until the end of the track. The motor accelerates the ball like the electric fields in the particle accelerator and the black will cause a collision

## Response 12

At CERN an AC current is used to attract and repel the particle accordingly to ensure the maximum attraction / repulsion is acting on the ball to ensure maximum speeds are reached. In CERN there are many forces being exerted on particles, here it is only the force from the baftery it is only the force from the baftery wohor. The speed satt NAR generated would be fax preater at CERN.

#### Response 13

This model of a particle accelerator has no magnetic fields one electric fields.

The hadron collider has magnetic fields so the partiles more in a circular path and the electric fields accelerate the particles so the more fast enough. They accelerate due to the unbalanced force from the electric field. Hackron has 'dees' and the polarity

constantly changed so the

6. (c) (continued)

particles com cross the does in beth directions.

This model uses a motor to accolerate the ball. A real one uses an electric field to accelerate the pourticle.

This model uses a circular brack to create a curred path for the boll. A real one use an magnetic field to create a circular posses

This model uses a plastic block to collide with the bout.

A real one uses other perhides to collide with particles.

#### Response 14

The model represents a place synchretion like the IHC, which uses both electric comes magnetic fields to accept acte pour ticles our owned a ving.

In the Ltic, sources of potential difference located around the ring increase the porticles energy by generating electric fields, according to This causes them to accelerate in the model, the batter-operated waters fullfill this vole as they accelerate the ball. In the Ltic, Magnetic fields one used to

control the particles' etwection and ensure they follow the conrects proofs around the ring. The fields all fleet the particles in a direction perpendicular to both the field direction and the particles' velocity. It is railed a synchrotron because the magnetic field strength must synchronise with the particles inorgasing speed to ensure correct affection.

There is no directs can portion to be made in the model with this, as it is kept going in the north office cause or by the constant antact with the plastic track. Arother difference between the two submations is that in the plastic track. Arother difference between the two collisions is that in the wester, the collision is between a main and stational object, where as in the litt, two streams of partices are accelerated in apposite directions before bong moute to colliste at very light energy, effectively doubling the crongy of one call water. This would be impossible in the month unless another therefore built was accorded to another thanks in the month to be a crossible than the month to the street and the other direction defined they collished to a crossible ball cauled go in the other direction defined the tracks

| Q6(a)(ii)  | 3 |                                                                                                                                                                                                                      |
|------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Response 1 | 2 | The candidate has selected an appropriate relationship, substituted correctly but has not included the correct unit in the final answer.                                                                             |
| Response 2 | 2 | The candidate has selected an appropriate relationship, substituted correctly but has made an incorrect statement, $\sqrt{5.71}$ × $10^{14}$ = $2.3891448.62$ , and so the mark for the final answer is not awarded. |
| Response 3 | 3 | The candidate has selected an appropriate relationship, substituted correctly and has given an acceptable final answer.                                                                                              |
| Q6(b)      | 2 |                                                                                                                                                                                                                      |
| Response 1 | 0 | The candidate has not suggested an observed change. The mark for justification cannot be accessed.                                                                                                                   |
| Response 2 | 0 | The candidate's suggested observed change is incorrect. Again, the mark for justification cannot be accessed.                                                                                                        |
| Response 3 | 1 | The candidate's suggested observed change is acceptable, but their justification does not imply an increase in the <i>rate</i> of electrons hitting the screen.                                                      |
| Response 4 | 1 | Again, the candidate's suggested observed change is acceptable, but their justification does not imply an increase in the energy of the electrons hitting the screen.                                                |

| Q6 (c)                                                                                                                                                                                       | 3                                                                                                                                                                                                 | 1 – limited 2 – reasonable 3 – good                                                                                                                                                                                                                                            |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Response 1                                                                                                                                                                                   | The candidate's response demonstrates a limited understanding of the physics involved, comparing the shape of the tracks, and the nature of the collisions.                                       |                                                                                                                                                                                                                                                                                |  |  |
| Response 2                                                                                                                                                                                   | Again, the candidate's response demonstrates a limited understanding of the physics involved, comparing the nature of the collisions.                                                             |                                                                                                                                                                                                                                                                                |  |  |
| Response 3                                                                                                                                                                                   | 2                                                                                                                                                                                                 | The candidate has made a number of points, comparing how acceleration is achieved, and the possibility of the model being refined to collisions between two balls. Overall, it was felt that the understanding of the physics demonstrated was reasonable rather than limited. |  |  |
| Response 4 The candidate has compared various aspects, including the trave medium, means of acceleration and the collisions, demonstrating reasonable understanding of the physics involved. |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                |  |  |
| Response 5                                                                                                                                                                                   | The candidate shows good knowledge of the working of a particle accelerator, and contrasts and compares a number of aspects with the model, showing a good understanding of the physics involved. |                                                                                                                                                                                                                                                                                |  |  |
| Response 6                                                                                                                                                                                   | Response 6                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                |  |  |
| Response 7 1                                                                                                                                                                                 |                                                                                                                                                                                                   | The candidate is aware that the track is modelling the magnetic field in a particle accelerator, showing a limited understanding of the physics involved.                                                                                                                      |  |  |
| particle accelerator and does not comment in great detail                                                                                                                                    |                                                                                                                                                                                                   | The candidate's response mainly concentrates on the working of a particle accelerator and does not comment in great detail on the model, demonstrating a limited understanding of the physics involved.                                                                        |  |  |
| Response 9                                                                                                                                                                                   | 2                                                                                                                                                                                                 | The candidate's response compares the model with a particle accelerator, highlighting similarities and differences, showing a reasonable understanding of the physics involved.                                                                                                |  |  |
| I Response 10 I U I                                                                                                                                                                          |                                                                                                                                                                                                   | The candidate's response does not demonstrate even a limited understanding of the physics involved.                                                                                                                                                                            |  |  |

| Question<br>/Response | Mark | Commentary                                                                                                                                                                             |
|-----------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Response 11           | 1    | The candidate's comparison of the model with a particle accelerator is very basic and shows just a limited understanding of the physics involved.                                      |
| Response 12 <b>0</b>  |      | The candidate's response does not demonstrate even a limited understanding of the physics involved.                                                                                    |
| Response 13           | 2    | The candidate has compared a number of aspects of the model with a particle accelerator, and demonstrates a very reasonable understanding of the physics involved.                     |
| Response 14           | 3    | As the previous response, the candidate has compared a number of aspects of the model with a particle accelerator, and demonstrates a very good understanding of the physics involved. |