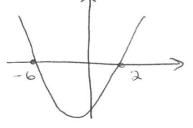
$$(16)^{(4)}$$
 $p(4,k)$ $C(1,-2)$

$$d = \sqrt{(4-1)^2 + (k-(-2))^2}$$

$$= \sqrt{3^2 + (k+2)^2}$$


$$= \sqrt{9+k^2+4k+4}$$

= JR2+4R+13

p) radius = 5

$$\sqrt{k^2+4k+13}$$
 > 5
 $k^2+4k+13$ > 25
 $k^2+4k-12$ > 0

$$(k+6)(k-2)$$
 $k=-6$
 $k=2$

when k<-6, k>2

12 + 4k-1270

Question		n	Generic scheme	Illustrative scheme	Max mark
16.	(a)		 identify centre apply distance formula and demonstrate result 	•¹ $(1, -2)$ stated or implied by •² •² $\sqrt{(4-1)^2 + (k-(-2))^2}$ leading to $\sqrt{k^2 + 4k + 13}$	2

Notes:

1. Beware of candidates who 'fudge' their working between \bullet^1 and \bullet^2 .

Commonly Observed Responses:

(b)	•³ interpret information	$ \bullet^3 \sqrt{k^2 + 4k + 13} > 5$	4
	• 4 express inequality in standard quadratic form	$\bullet^4 k^2 + 4k - 12 > 0$	
	•5 determine zeros of quadratic expression	● ⁵ −6, 2	
	•6 state range with justification	•6 $k < -6, k > 2$ with eg sketch or table of signs	

Notes:

- 2. Where a candidate has used an incorrect expression from part (a), \bullet^3 is not available. However, \bullet^4 , \bullet^5 and \bullet^6 are still available for dealing with an expression of equivalent difficulty.
- 3. Candidates who do not work with an inequation from the outset lose \bullet^3 , \bullet^4 and \bullet^6 . However, \bullet^5 is still available. See Candidate A.

Commonly Observed Responses:

Commonly Case ver Responses.					
Candidate A					
$\sqrt{k^2 + 4k + 13} = 5$	•³ x				
$k^2 + 4k - 12 = 0$	• ⁴ 🗴				
k = -6, k = 2	●5 ✓				
For P to lie outside the circle					
k < -6, k > 2	● 6 🗶				