Question			Expected response	Max mark	Additional guidance
11.	(a)	(i)	$n = \frac{\sin \theta_1}{\sin \theta_2}$ $1.53 = \frac{\sin 36.0}{\sin \theta_2}$ $\theta_2 = 22.6^{\circ}$ (1)	3	Accept: 23, 22.59, 22.592 Accept: $\frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2}$ 1, 53, $\sin 36.0$
					$\frac{1.53}{1} = \frac{\sin 36.0}{\sin \theta_2}$ (1) $\theta_2 = 22.6^{\circ}$ (1)
		(ii)	180-60-[90-22.6] (1) $(=52.6^{\circ})$ (90-52.6=B) $B=37.4^{\circ}$ (1)	2	Or consistent with (a)(i) Value must be given to 1 decimal place or consistent with the number of decimal places in answer to (a)(i)
	(b)	(i)	The angle of incidence that produces an angle of refraction of 90°.	1	Accept a description of the incident ray as an alternative to the word 'incidence'. Do not accept: The minimum angle of incidence that causes total internal reflection.
		(ii)	$\sin \theta_c = \frac{1}{n} $ $\sin \theta_c = \frac{1}{1.53} $ (1)	3	Accept: 41, 40.81, 40.813
			$\theta_c = 40.8^{\circ} \tag{1}$		

Question			Expected response	Max mark	Additional guidance
11.	(c)		Emergent ray drawn at an angle greater than angle B (1) $\left(n = \frac{\sin \theta_1}{\sin \theta_2}\right)$ $1.53 = \frac{\sin \theta_1}{\sin 37.4}$ (1) $(\theta_1 = 68.3^\circ)$ calculated angle correctly shown on diagram (1)	3	or consistent with (a)(ii) and/or (b)(ii) Accept: 68, 68.32, 68.324 Ignore any partially reflected rays. If (a)(ii) has a greater angle than (b)(ii) then the total internal reflection would be correct Internally reflected ray drawn (1) Angle of reflection approximately equal to angle B (1) Value for angle of reflection shown on diagram consistent with (a)(ii) (1) Ignore any further refraction at other glass-air boundaries.