$$\int_{0}^{4\pi} \cos(3x - \frac{\pi}{6}) dx$$

$$= \left[\sin(3x - \frac{\pi}{6}) \times \frac{1}{3} \right]_{0}^{\pi}$$

$$= \left(\frac{1}{3} \sin(3(\frac{\pi}{4}) - \frac{\pi}{6}) \right) - \left(\frac{1}{3} \sin(3(0) - \frac{\pi}{6}) \right)$$

$$= \left(\frac{1}{3} \sin(\frac{\pi}{6}) - \left(\frac{1}{3} \sin(-\frac{\pi}{6}) \right) - \left(\frac{1}{3} \sin(-\frac{\pi}{6}) \right)$$

$$= \left(\frac{1}{3} \sin(\frac{\pi}{6}) - \left(\frac{1}{3} \sin(-\frac{\pi}{6}) \right) - \left(\frac{1}{3} \sin(-\frac{\pi}{6}) \right)$$

$$= \left(\frac{1}{3} \times \frac{1}{2} \right) - \left(\frac{1}{3} \times (-\frac{1}{2}) \right)$$

$$= \frac{1}{6} - \left(-\frac{1}{6} \right)$$

$$=\frac{1}{3}$$

Question		n	Generic scheme	Illustrative scheme	Max mark
11.			•¹ start to integrate	$\bullet^1 \sin\left(3x-\frac{\pi}{6}\right)$	4
			•² complete integration	• 2 $\times \frac{1}{3}$	
			•³ substitute limits	$\bullet^3 \left(\frac{1}{3}\sin\left(3\times\frac{\pi}{9}-\frac{\pi}{6}\right)\right)$	
				$-\left(\frac{1}{3}\sin\left(3\times0-\frac{\pi}{6}\right)\right)$	
			• ⁴ evaluate integral	$\bullet^4 \frac{1}{3}$	

Notes:

- 1. Where candidates make no attempt to integrate or start to integrate individual terms within the bracket or use another invalid approach eg $\sin\left(3x-\frac{\pi}{6}\right)^2$ or $\int\cos(3x)-\cos\left(\frac{\pi}{6}\right)dx$, award 0/4.
- 2. Do not penalise the inclusion of +c or the continued appearance of the integral sign after \bullet 1.
- 3. Candidates who work in degrees from the start cannot gain \bullet^1 . However, \bullet^2 , \bullet^3 and \bullet^4 are still available.
- 4. •¹ may be awarded for the appearance of $\sin\left(3x \frac{\pi}{6}\right)$ in the first line of working, however see Candidates B and D.
- 5. 4 is only available where candidates have considered both limits within a trigonometric function.
- 6. Where candidates use a mixture of degrees and radians, •³ is not awarded. However, •⁴ is still available.

Commonly Observed Responses:

comment, case received						
Candidate A - using addition form	ula	Candidate B - integrated over two lines				
$\int_0^{\frac{\pi}{9}} \left(\cos 3x \cos \frac{\pi}{6} + \sin 3x \sin \frac{\pi}{6}\right) dx$		$\int_{0}^{\frac{\pi}{9}} \left(\cos \left(3x - \frac{\pi}{6} \right) \right) dx$				
$=\frac{1}{3}\sin 3x \times \frac{\sqrt{3}}{2}\dots$	•1 ✓	$=\sin\left(3x-\frac{\pi}{6}\right)$	•1 ✓			
$\dots -\frac{1}{3}\cos 3x \times \frac{1}{2}$	•² ✓	$=\frac{1}{3}\sin\left(3x-\frac{\pi}{6}\right)$	•² x			
Candidate C - integrated in part		Candidate D - integrated in part				
$3\sin\left(3x-\frac{\pi}{6}\right)$	•¹ ✓ •² x	$-\frac{1}{3}\sin\left(3x-\frac{\pi}{6}\right)$	•¹ x •² ✓			
$3\sin\left(3\times\frac{\pi}{9}-\frac{\pi}{6}\right)-3\sin\left(0-\frac{\pi}{6}\right)$	•³ <u>√ 1</u>	$-\frac{1}{3}\sin\left(3\times\frac{\pi}{9}-\frac{\pi}{6}\right)+\frac{1}{3}\sin\left(0-\frac{\pi}{6}\right)$	•³ ✓ 1			
3	•4 1	$\left -\frac{1}{3} \right $	•4 1			