Question			Expected response		Max mark	Additional guidance
5.	(a)	(i)	$f_o = f_s \left(\frac{v}{v \pm v_s} \right)$ $f_o = 440 \left(\frac{340}{340 - 31} \right)$	(1)	3	Accept: 500, 484, 484.1 Accept:
				(1)		$f_o = f_s \left(\frac{v}{v - v_s} \right)$
			$f_o = 480 \text{ Hz}$	(1)		
		(ii)			2	MUST JUSTIFY
			Less than	(1)		Accept: "It is less than" Do not accept: "Sound is less than" on its own.
			Statement that there are fewer wavefronts per second.			Accept: Waves or wave crests in place of wavefronts.
			OR			Can be justified by calculation.
			The wavefronts are further apart OR	•		Significant figure rule suspended for this calculation.
			The wavelength increases OR			Can be justified by explaining the use of the '+' version of the
			diagram showing wavefronts clos together ahead of the car and further apart behind it.	er (1)		In a diagram, there must be an implication of direction of travel.
			or any similar response			Do not accept: Any answer that implies that the frequency/wavelength of the sound produced by the siren itself is changing.
	(b)	(i)	T = 0.5 s		1	

Q	Question		Expected response	Max mark	Additional guidance
5.	(b)	(ii)	When the red LEDs are forward biased the blue LEDs are reverse biased (or vice versa). (1)	2	INDEPENDENT MARKS Accept: The red and blue LEDs are connected the opposite way round.
			LEDs (only) light when forward biased (1)		LEDs will (only) conduct in one direction OR Red LEDs conduct during one half of the cycle the blue LEDs conduct during the other half of the cycle. Do not accept: 'different direction' alone.
	(b)	(iii) (A)	$v = f\lambda$ $3.00 \times 10^8 = f \times 625 \times 10^{-9}$ (1) E = hf both relationships anywhere (1) $E = 6.63 \times 10^{-34} \times \left(\frac{3.00 \times 10^8}{625 \times 10^{-9}}\right)$ (1) $E = 3.18 \times 10^{-19}$ J (1)	4	Accept 3.2, 3.182, 3.1824 1 mark for both relationships 1 mark for each substitution 1 mark for final answer Alternative method: $E = \frac{hc}{\lambda}$ (1) $E = 6.63 \times 10^{-34} \times \left(\frac{3.00 \times 10^8}{625 \times 10^{-9}}\right)$ (1),(1) $E = 3.18 \times 10^{-19} \text{ J}$ (1) Do not accept: $E_2 - E_1 = hf$
		(iii) (B)	The (energy) band gap in a blue LED is greater. (1) The photons of blue light have more energy (than the photons of red light). (1)	2	Accept: Converse arguments. If no mention of band gap, 0 marks. Accept: The photons of blue light have a higher frequency (than the photons of red light). OR The photons of blue light have a smaller wavelength (than the photons of red light).