| Question |     | on | Answer                                                                                                                                                                                                                                      | Max<br>mark      | Additional guidance                                                                                                                                                                                                                                                                                                    |
|----------|-----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.      | (a) |    | A (central) positively charged nucleus.                                                                                                                                                                                                     | 2                | Any two correct answers Independent marks                                                                                                                                                                                                                                                                              |
|          |     |    | (Negatively charged) electrons in (discrete energy levels/shells (orbiting the nucleus not radiating energy.)  When an electron moves from one state t another, the energy lost or gained is don so ONLY in very specific amounts of energy | ,<br>,<br>,<br>, | Accept: A clearly labelled diagram A (central) nucleus containing protons (and neutrons).                                                                                                                                                                                                                              |
|          |     |    | Each line in a spectrum is produced when an electron moves from one energy level/orbit/shell to another.                                                                                                                                    |                  | Some indication of quantisation of energy                                                                                                                                                                                                                                                                              |
|          |     |    |                                                                                                                                                                                                                                             |                  | Do not accept: Atom is mainly empty space. Nucleus is small compared to size of the atom. Any statement referring to photons and photon frequency is a consequence, not a feature.                                                                                                                                     |
|          | (b) |    | $E_2 - E_1 = hf$ $-1.36 \times 10^{-19} - (-5.45 \times 10^{-19}) = 6.63 \times 10^{-34} \times f$ (1) $f = 6.17 \times 10^{14} \text{ Hz}$ (1)                                                                                             | 3                | Accept: $6 \cdot 2$ , $6 \cdot 169$ , $6 \cdot 1689$ Accept: $(\Delta)E = hf$ or $E_3 - E_1 = hf$ for formula mark anywhere Accept: $5 \cdot 45 \times 10^{-19} - 1 \cdot 36 \times 10^{-19}$ $= 6 \cdot 63 \times 10^{-34} \times f$ for substitution mark  Note: Correct $\Delta E = 4 \cdot 09 \times 10^{-19}$ (J) |
|          |     |    |                                                                                                                                                                                                                                             |                  | If $1 \cdot 36 \times 10^{-19} - 5 \cdot 45 \times 10^{-19}$ is shown for $\Delta E$ , maximum 1 mark for a correct formula.                                                                                                                                                                                           |

| Question |     |  | Answer                                                                 |     | Max<br>mark | Additional guidance                                                                                                              |                          |
|----------|-----|--|------------------------------------------------------------------------|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 10.      | (c) |  | $z = \frac{\lambda_o - \lambda_r}{\lambda_r}$                          | (1) | 5           | Accept: 2·3, 2·287, 2·2866 $\lambda_{0} - \lambda_{r}$                                                                           |                          |
|          |     |  | $z = \frac{661 - 656}{656}$                                            | (1) |             | $z = \frac{\lambda_o - \lambda_r}{\lambda_r}$ anywhere, 1 mark                                                                   |                          |
|          |     |  | $(z = 7 \cdot 62195122 \times 10^{-3})$                                |     |             | $z = \frac{v}{c}$<br>anywhere, 1 mark                                                                                            |                          |
|          |     |  | $z = \frac{v}{c}$                                                      | (1) |             | anywhere, i mark                                                                                                                 |                          |
|          |     |  | $7 \cdot 62195122 \times 10^{-3} = \frac{v}{3 \cdot 00 \times 10^{8}}$ | (1) |             | Substitution of 3·00×10 <sup>8</sup>                                                                                             | (1)                      |
|          |     |  | $v = 2 \cdot 29 \times 10^6 \text{ m s}^{-1}$                          | (1) |             | Alternative method: $\frac{v}{c} = \frac{\lambda_o - \lambda_r}{\lambda_r}$ $\frac{v}{3.00 \times 10^8} = \frac{661 - 656}{656}$ |                          |
|          |     |  |                                                                        |     |             | $v = 2.29 \times 10^6 \text{ m s}^{-1}$                                                                                          |                          |
|          |     |  |                                                                        |     |             | Substitution of wavelengths, Substitution of 3.00×108                                                                            | (2)<br>(1)<br>(1)<br>(1) |