Question			Expected response	Max mark	Additional guidance
12.	(a)	(i)	$ \left(\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}\right) $ $ \left(\frac{1}{R_T} = \frac{1}{16} + \frac{1}{16}\right) $ $ R_T = 8(\Omega) $ $ R = ((8+16) =) 24(\Omega) $ (1) $ V = IR $ $ V = 0.38 \times 24 $ (1) $ V = 9.1 \text{ V} $ (1)		Accept: 9, 9.12, 9.120 $24 \; (\Omega) \; \text{anywhere 2 marks}$ $V = IR \; \text{anywhere - 1 mark}$ Alternative methods $2 \; \text{marks for 24} \; (\Omega) \; \text{anywhere}$ $1 \; \text{mark for all relationships}$ $1 \; \text{mark for all substitutions}$ $1 \; \text{mark for final answer}$
		(ii)	E = V + Ir (1) $12 = 9.1 + (0.38 \times r)$ (1) $r = 7.6 \Omega$ (1)	3	Or consistent with a(i)* Accept: 8, 7.63, 7.632 *If V = 12 V then max 1 mark for relationship. Alternative method: $E = I(R+r)$ (1) $12 = 0.38(24+r)$ (1) $r = 7.6 \Omega$ (1) For this method accept: 8, 7.58, 7.579 for 'lost volts' accept: $V = Ir$ $V = IR$

Question			Expected response		Max mark	Additional guidance	
12.	(a)	(iii)	$P = I^2 R$	(1)	3	Or consistent with (a)(i) and/or(a)	(ii)
			$P = 0.38^2 \times 7.6$	(1)		Accept: 1, 1.10, 1.097	
			P = 1.1 W	(1)		Accept: $P = I^2 r$	
						Alternative methods: $P = IV$ (1	,
						$P = 0.38 \times (12 - 9.1)$ (1)	
						P = 1.1 W (1)
						OR	
						$P = \frac{V^2}{R} $ (1)
						$P = \frac{\left(12 - 9.1\right)^2}{7.6} \tag{1}$)
						P = 1.1 W (1)
	(b)		(Power dissipated) less than	(1)	2	MUST JUSTIFY	
			(Total circuit resistance increase current decreases, internal	s),		Accept: current decreases, and lost volts decreases.	
			resistance stays the same	(1)	_	lost volts decreases, and internal resistance stays the same.	